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Introduction

ASDEX Upgrade (AUG) carries out “bona fide” disruption mitigation studies for ITER

MGI (noble gases) on AUG has been used to study thermal quench (divertor load and 
forces) mitigation, and runaway electron (RE) generation and dissipation

Impurities in plasma are powerful radiators: exp. and modelling works from many 
devices suggest that thermal load and force mitigation in ITER disruptions is feasible

In what follows: focus on assimilation of injected gas and RE dissipation by collisions 
with gas (data analysis, basis for code benchmark) because 

Whether MMI suppression and or dissipation of REs is feasible in ITER disruptions 
depends on ne(t,)

Ultimate questions: 

Is ne(t,) physically achievable? 

Is an injection scheme able to assure needed ne(t,) technically feasible? 

(→ should AUG pursue disruption mitigation experiments further? Or concentrate 
on modelling? Or invest mainly on plasma control algorithm?)

Caveat: small device compared to ITER
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Which ne(t,)?

(1)                              (2)                                                          (3)

nc > 1022 -1023 /m3                (ITER Physics Basis, Nuclear Fusion 1999) 

2nd argon injection into RE beam: nAr > 1022 / m3 needed to induce RE current 
decay … but too late  (S. Konovalov, IAEA 2016) 

 Ar/D2 injection to suppress seed and avalanche (= slow down CQ); within ~10 ms 

injection of 14 kPa m3 → ne ~ 41021 /m3 (J.R. Martin-Solis, Nuclear Fusion 2017)

(I believe we should keep considering all three schemes)
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AUG: Mitigation valves, relevant diagnostics and coils 
    

interferometer

+ SXR, magnetics, gamma spectrometer, thermography
+ fast camera with filter, halo current, strain gauges

spectrometers

2017 valves, 5 barl each
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RE beam generation: 1st injection

First exp.s in 2014 (~ 80 discharges by now)

RE beam (IRE < 400 kA for < 500 ms) is generated with argon puff and 
mostly reproducible

typically: circular plasma, Ip = 0.8 MA, Bt ~ 2.5 T, low ne, PECRH > 2 MW,  

plasma has been vertically stable and w/o MHD activity; 
often vertically unstable in 2017

RE current after 1st Ar injection 
can follow reference Ip;
faster or slower depending on 
argon injected;
→ E from OH system adds to
self-inductance
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RE beam suppression by 2nd gas (argon and neon) injection

relevant for injection schemes (1) and (2) 

argon and neon (not shown) effectively suppress RE beam

Ninj  21022 argon atoms; Ninj  4.31022 neon atoms

2nd argon injection
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Density and REs 

Electron density is measured by 
COO  

can follow fast transients but 
noisy; only 2 chords

and DCN diagnostics

can follow slow transients, 5 
chords, 1 toroidal position; 
correct ~ 50 ms after injection
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Density and REs 

discussion of 1st injection, RE 
beam and 2nd injection phases
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1st argon injection – to create RE beam

argon MGI in AUG not documented in literature → shown here
small argon amount injected – to avoid suppressing the REs
→ argon assimilation is not small 
ne / (Ninj/V) = 50 +-15 % from V-1 (averaged 5 ms after TQ); but

argon ionization stage not known; recombination possible 
line integrated ne decays in RE beam also because V-1 chord length decreases  
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ne in RE plateau

DCN density (→ profile reconstruction) and 
spectroscopic measurements (→ mostly 
argon; Te ~ 1.7 eV) available in RE plateau

density outside of LCFS →  large diffusion 
coefficients

ne ~ 6-9 1019 /m3 ~ weak f(IRE);

why this (not a larger or smaller) density?

Density profiles in RE beam
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2nd argon injection – to dissipate RE beam

argon // velocity ~ 5 m / 1ms (vertical diode cameras,   )

slow density rise ~ gas penetration, consistent with perp. classical ion diffusion 
(but also gas flow)

~ 1 ms
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2nd argon injection – to dissipate RE beam

ne averaged within 10 ms after 2nd argon injection shows no significant increase
max ne versus Ninj / (plasma volume) after 2nd inj.: up to 10 % increase 
max ne versus Ninj / (vessel volume) after 2nd inj. (100 %; meaning?) 


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2nd argon injection – to dissipate RE beam

Eϕ∝
dI p
dt

li
2

li=4

nAr =  3-6 1021 /m3

becomes interesting 
for ITER

10 times larger than 
in AUG 

ITER
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Fuelling efficiency at large neon Ninj       EPS 2009

At large neon-Ninj :

Feff decreases

large poloidal  density asymmetry = cold ions, low mobility

+ Feff degradation at large thermal energy (?)  
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DD2 pellets in RE beam

Small contribution to animated discussion on ITER DMS and RE suppression 

I (GP) do not know of similar exp.s

Shot 34183: 15 pellets, 1.91.92.0 mm3  → 15  51020 D2 

400 ms of RE beam ramped down by control system; Uloop </= 0 → “clean” 
plasma; spectroscopic measurement underway    

0-D energy balance calculations: pellet should sublimate at “edge” of RE beam

Q: how to show it? Important for modelling and more

diode bolometer measurements seem to confirm calculations

density decays probably because Te not large enough to ionize D
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DD2 pellets in RE beam
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2

L

Pellet in “hot” thermal plasma (cartoon)

Pellet in RE beam

pellet 
monitor 
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2
pellet in thermal plasma; horizontal (left) and vertical (right) diode bolometer 
background subtracted

Δt = 2 ms Δt = 2 ms
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2
pellet in RE beam; horizontal (left) and vertical (right) diode bolometer 
background subtracted

Δt = 2 ms Δt = 2 ms

ch
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l n
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Why D does not refuel the plasma?

radiating region in plasma core needs input power from RE beam (left)

radiation from pellet-plasma interaction starts at edge of RE beam (right)

small Prad and ne decay → neutral Ds crosse plasma w/o ionizing (hypothesis)  

maximum
start

vertical diode bolometer sec. 5
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Summary

     
Relatively large argon assimilation after 1st injection (~ 50 %) 

density rather constant in the RE beam phase (no clear 
dependence on current)

up to 10 % argon assimilation after 2nd injection; probably radial 
diffusion coefficient can be inferred

just trowing mass into plasma does not help (D2 pellets)

understand whether RE suppression/dissipation is feasible with 
MMI means understanding particle and energy (which Te?) 
transport in these plasmas

plenty of experimental data to benchmark models 
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Additional slides
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Pre-TQ time 

pre-TQ lasts > 2 ms (variables behind scatter data not yet identified
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Equilibrium, density profile 

Series of equilibria; 
beam position confirmed by SXR

Density profiles in RE beam
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RE suppression with argon

Line integrated density after 1st and 
2nd argon injection (70 ms apart)

RE beam lifetime versus argon Ninj
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Friction force (eEc) on REs from free and bound electrons

Several known mechanisms of RE losses

Only inelastic collisions RE–electrons considered (energy losses)

Formally:

Ec depends on plasma composition (atomic species and ionization state)

1
R E

=
d IR E

d t
1

IR E

=
eE−Ec

pR E

E = V loop /2 R 

Ec = e3 ne ln  e , free/ 4 me c2

ne = ne , freeln  e , bound/ ln  e ,free ne , bound
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Ec versus E

Several spectrometers configured to measure Ar-I, Ar-II, C-II and C-III line 
emission; allow to determine Te, nAr and nC (ne is known)

line radiance:

Xeff: photon emissivity coefficients calculated with a collisional radiative 
model and ADAS208-code (R. Dux)

fz: fractional abundance

comparison of line radiance of C-II 
and C-III with (fz Xeff) suggests 
Te < 2 eV and nAr / ne ~ 100 %

→ Ec > E

(uncertainties in atomic data for argon)

L =
1

4
∫ ne nz f f Xeff dl
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